2,305 research outputs found

    Two-zero Majorana textures in the light of the Planck results

    Full text link
    The recent results of the Planck experiment put a stringent constraint on the sum of the light neutrino masses, m1+m2+m3 < 0.23 eV (95 % CL). On the other hand, two-zero Majorana mass matrix textures predict strong correlations among the atmospheric angle and the sum of the masses. We use the Planck result to show that, for the normal hierarchy case, the texture with vanishing (2,2) and (3,3) elements is ruled out at a high confidence level; in addition, we emphasize that a future measurement of the octant of the atmospheric mixing angle (or the one sigma determination of it based on recent fit to neutrino data) will put severe constraint on the possible structure of the Majorana mass matrix. The implication of the above mentioned correlations for neutrinoless double beta-decay are also discussed, for both normal and inverted orderings.Comment: 9 pages, 8 figure

    Fatigue failure analysis of vibrating screen spring by means of finite element simulation: a case study

    Get PDF
    Vibrating screens are often used in the mining industry to separate mineral particles by size. In many designs, spring arrays are used to provide the system with the necessary stiffness for screens to vibrate in a controlled manner. Naturally, these springs are subjected to varying loading cycles, which can cause their premature fatigue failure. This behavior has been studied by means of finite element analysis and compared with data obtained from a real case scenario, in which a helical spring failed. The 3D computational model was developed using the geometric characteristics and material properties of a fractured spring, as well as the loading characteristics of a specific vibrating screen. The meshing and the simulation tasks were performed in the general purpose software ANSYS Mechanical. Given the nature of the helical springs and the high-cycle loading conditions, for the fatigue analysis it was determined that a stress-life approach with constant amplitude and non-proportional loading best fit the investigated phenomenon. In solving the nonproportional loading case, stress values of two static scenarios were required to determine the upper and lower limits. Then, to perform the fatigue calculations a solution combination was used. In addition, in order to correct the effect of mean stress and calculate the stresses component respectively the Goodman and Von Mises theories were employed. Simulation results showed that spring would present failure below the second turn of the coil when working with the full nominal load during nearly forty million cycles. These results strongly agreed with the data extracted from a vibrating screen where fractured spring had been working. Fatigue analysis also predicted that the nominal load should be reduced to 90% in order for the spring to meet the minimum life requirements before failure occur

    Neutrino masses and mixings in a Minimal S_3-invariant Extension of the Standard Model

    Full text link
    The mass matrices of the charged leptons and neutrinos, that had been derived in the framework of a Minimal S_3-invariant Extension of the Standard Model, are here reparametrized in terms of their eigenvalues. The neutrino mixing matrix, V_PMNS, is then computed and exact, explicit analytical expressions for the neutrino mixing angles as functions of the masses of the neutrinos and charged leptons are obtained. The reactor, theta_13, and the atmosferic, theta_23, mixing angles are found to be functions only of the masses of the charged leptons. The numerical values of theta_13{th} and theta_23{th} computed from our theoretical expressions are found to be in excellent agreement with the latest experimental determinations. The solar mixing angle, theta_12{th}, is found to be a function of both, the charged lepton and neutrino masses, as well as of a Majorana phase phi_nu. A comparison of our theoretical expression for the solar angle theta_12{th} with the latest experimental value theta_12{exp} ~ 34 deg allowed us to fix the scale and origin of the neutrino mass spectrum and obtain the mass values |m_nu1|=0.0507 eV, |m_nu2|=0.0499 eV and |m_nu3|=0.0193 eV, in very good agreement with the observations of neutrino oscillations, the bounds extracted from neutrinoless double beta decay and the precision cosmological measurements of the CMB.Comment: To appear in the Proceedings of the XXIX Symposium on Nuclear Physics, Cocoyoc, Mex., January 2006. Some typographical errors on formulae correcte

    Lepton masses, mixings and FCNC in a minimal S_3-invariant extension of the Standard Model

    Full text link
    The mass matrices of the charged leptons and neutrinos, previously derived in a minimal S_3-invariant extension of the Standard Model, were reparametrized in terms of their eigenvalues. We obtained explicit, analytical expressions for all entries in the neutrino mixing matrix, V_PMNS, the neutrino mixing angles and the Majorana phases as functions of the masses of charged leptons and neutrinos in excellent agreement with the latest experimental values. The resulting V_PMNS matrix is very close to the tri-bimaximal form of the neutrino mixing matrix. We also derived explicit analytical expressions for the matrices of the Yukawa couplings and computed the branching ratios of some selected flavour changing neutral current processes as functions of the masses of the charged leptons and the neutral Higgs bosons. We find that the S_3 x Z_2 flavour symmetry and the strong mass hierarchy of the charged leptons strongly suppress the FCNC processes in the leptonic sector well below the present experimental upper bounds by many orders of magnitude.Comment: One paragraph added with comparison to tri-bimaximal mixing, two lines changed in abstract, references added, typographical errors correcte

    Cool dwarfs in wide multiple systems. Paper 6: A curious quintuple system of a compact Sun-like triple and a close pair of an M dwarf and a very cool white dwarf at a wide separation

    Get PDF
    The system WDS 16329+0315 is an old, nearby quintuple physical system in the thick Galactic disc formed by a close-resolved, triple primary of solar metallicity, namely HD 149162, and a very wide, common proper motion, secondary pair, formed by the mid-M dwarf G-17-23 and the white dwarf LSPM J1633+0311S. We present an exhaustive astrometric and photometric data compilation of the system, including Gaia DR2 parallaxes and proper motions, and the first analysis of the nature of the faintest component. LSPM J1633+0311S (HD 149162 C) is a very cool white dwarf with an effective temperature of only about 5500 K, near the coolest end of the grid of theoretical models.Comment: The Observatory, in press, to appear in December 201

    Polarization tailored novel vector beams based on conical refraction

    Full text link
    Coherent vector beams with involved states of polarization (SOP) are widespread in the literature, having applications in laser processing, super-resolution imaging and particle trapping. We report novel vector beams obtained by transforming a Gaussian beam passing through a biaxial crystal, by means of the conical refraction phenomenon. We analyze both experimentally and theoretically the SOP of the different vector beams generated and demonstrate that the SOP of the input beam can be used to control both the shape and the SOP of the transformed beam. We also identify polarization singularities of such beams for the first time and demonstrate their control by the SOP of an input beam

    Dynamic LFSRs as an alternative to LFSRs in extended fields - A comparative study

    Get PDF
    Linear feedback shift registers (LFSRs) with dynamic feedback (DLFSRs) and LFSRs defined over extended fields i.e., over GF(2n), constitute building blocks of many pseudorandom sequence generators used in stream ciphers. In this work, the advantages and disadvantages of using DLSFR instead of LFSR in GF(2n) are analyzed. The work is based on the possibility of obtaining a DLFSR in GF(2) equivalent to an LFSR in GF(2n), given that both structures present equivalent binary models formed by interleaved sequences. Likewise, the possibility of using DLFSR on binary vectors is proposed in order to take advantage of the word lengths of current processors

    Biology of killer yeasts

    Get PDF
    Killer yeasts secrete proteinaceous killer toxins lethal to susceptible yeast strains. These toxins have no activity against microorganisms other than yeasts, and the killer strains are insensitive to their own toxins. Killer toxins differ between species or strains, showing diverse characteristics in terms of structuralgenes, molecular size, mature structure and immunity. The mechanisms of recognizing and killing sensitive cells differ for each toxin. Killer yeasts and their toxins have many potential applications in environmental, medical and industrial biotechnology. They are also suitable to study the mechanisms of protein processing and secretion, and toxin interaction with sensitive cells. This review focuses on the biological diversity of the killer toxins described up to now and their potential biotechnological applications
    corecore